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Global Invariants and Equilibrium States in 
Lattice Gases 

D. Bernardin ~ 

It is now well known that, in addition to the physical conserved quantities, 
lattice gases also have other unphysical ones related to the discretization of their 
phase space. From an abstract point of view a lattice gas can be considered like 
a full discrete Markov process L and these spurious conserved quantities yield 
the existence of a nonspatially homogeneous equilibrium state for L g. We show 
that a particular set of these conserved quantities is of special interest: Its 
elements will be called regular. These regular invariants are simply built from 
the local ones and their projection on each node is always a locally conserved 
quantity. Moreover, for most models they are one-to-one related to the Gibbs 
states of L k which remain factorized. It turns out that all the classical known 
spurious invariants are regular and one can exhibit simple conditions to build 
models with only regular' invariants. For the latter it is then justified to 
determine the transport coefficients of the locally conserved densities with the 
Green-Kubo procedure. 

KEY WORDS:  Lattice gases; cellular automata; global invariants; invariants 
in discrete stochastic processes; equilibrium states in lattice gases. 

INTRODUCTION 

One can think of a lattice gas cellular automaton (LGCA) as a finite 
isolated collection of particles with a finite set of velocities which move at 
integer times from nodes to nodes on a finite regular lattice. The collisions 
occur at the nodes of the lattice and locally conserve some quantities such 
as mass, momentum, or energy which appear as linear functions of the 
microscopic state of the node. These quantities are called local linear 
invariants; their averages are conserved densities whose evolution equa- 
tions described the macroscopic dynamics of the LGCA under proper 
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limits. In this paper, from an abstract point of view we will consider a 
lattice gas as a full discrete Markov process L, and thus we use integral 
notations, since they allow a wide variety of lattice gases to be described 
under the same formalism. Besides, they are close to the usual notations of 
continuous statistical theories. All the models considered here are supposed 
to obey semi-detailed balance. 

One of the best known example of such system is the FHP (t) model, 
which provides a tool to simulate 2D incompressible Navier-Stokes equa- 
tions. The most powerful method to investigate the hydrodynamics of 
LGCA consists of adapting the standard linear response theory of classical 
nonequilibrium statistical mechanics (z) to these full discrete systems, as is 
shown in ref. 3. This theory leads to the construction of a Green's correla- 
tion function which determines the local average of the conserved densities 
(i.e., of the local invariants) at any time as a linear functional of the 
thermodynamic variables in an initial local equilibrium state: The evolution 
is described by the Liouville equation of the lattice gas. One then assumes 
that this initial state relaxes to a global spatially homogeneous equilibrium 
state which is used to evaluate the Green's function. This final 
homogeneous state is completely defined by the initial assigned values of 
conserved densities, since the system is isolated. 

Let us then call global linear 1-invariant any linear function 4(-)  
defined on the whole phase space of the LGCA and such that the density 
k exp(qS(n)) is a Gibbs equilibrium distribution for the system (i.e., a 
factorized fixed point of L), k being a normalization constant and n a point 
in phase space. Since �9 is linear, q~(n) appears as a sum over all the nodes 
~: Z~ (~b(~), n(~)), where ~b(c~) is the projection of q~ at node c~. A global 
linear 1-invariant q~ is then spatially homogeneous if and only if qt(e) is 
constant over the nodes. One can then show that the only global 
homogeneous 1-invariants are those whose projection on each node is a 
(constant) local invariant (in fact, for models which obey semi-detailed 
balance: see Section 2). Then, if there are, for example, r independent 
local invariants, there are also only r independent global homogeneous 
1-invariants and thus we need r thermodynamic intensive variables in order 
to determine the homogeneous Gibbs states of the system. Let us note that 
this implies that any spurious global 1-invariant is not homogeneous. 

Now, if for a given LGCA, any global linear 1-invariant is 
homogeneous, it will only admit homogeneous equilibrium states (this is, 
for example, the case for the FHP model; see Section 6); under these condi- 
tions the Green's correlation function can be inverted in Fourier space and 
one obtains the expressions for the transport coefficients after taking the 
proper limits via the Green-Kubo procedure. 

Conversely, if the LGCA admits nonhomogeneous global 1-invariants, 
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it will admit nonhomogeneous equilibrium states and thus there is no 
reason that an initial nonequilibrium state relaxes to a homogeneous equi- 
librium one: This is, for example, the case of most models on the square 
lattice, such as the HPP model (4 6) and the 8- and 9-bit models, (v lO) and 
of many one-dimensional models (11 13) where spurious global 1-invariants 
occur. There is then a set of additional thermodynamic variables. On the 
one hand, this leads to a modification of the Green's function in order to 
take the inhomogeneity into account and on the other hand, which is the 
most important point, this new correlation function canot be inverted 
without further hypothesis and the Green-Kubo procedure breaks down. 

However, there is an important case where it is nevertheless possible 
to complete the Green-Kubo procedure in spite of the existence of spurious 
nonhomogeneous global 1-invariants: This case occurs if any global 
1-invariant is such that its projection on each node remains a local 
invariant (not necessarily constant). We will say that such a global 
1-invariant is regular. In the linear response theory one is then led to 
evaluate the Green's function with a nonhomogeneous equilibrium dis- 
tribution (see Section 5), which can now be inverted in Fourier space. But 
the spatial variations of the conserved densities arising from the inhomo- 
geneity of the final equilibrium state yield a modification of the transport 
equations as shown in refs. 10 and 17. Thus, it is essential to know if the 
global 1-invariants of a LGCA are regular or not. 

One part of the program of this paper will then be to exhibit condi- 
tions for easily testing if the global 1-invariants of a given LGCA are 
regular. With these conditions, it turns out that most of the known models 
have precisely only regular global 1-invariants and it is not surprising that 
all the spurious 1-invariants discovered so far are regular. Moreover, we 
will show that these regular 1-invariants can be simply determined from the 
local ones by requiring that they are invariant under the free propagation 
operator. This agrees with similar results obtained by Levermore and 
d'Humibres. (14) Furthermore, we will show in the examples that all the 
geometric invariants mentioned in the literature (the line invariants ~15) of 
the HPP model, the geometric staggered invariants of the 8- and 9-bit 
models, ~~ etc.) all have the same status: They are regular 1-invariants in 
the sense of the previous definition and they are all defined and computable 
from Proposition 5 of Section 2. Thus, for most models, one can systemati- 
cally find these global conserved quantities including the spurious ones 
either analytically (see examples in Section 6) or numerically following the 
procedures proposed by Zanetti (16) or d'Humi6res et alJ 11) 

In Section 1, after introducing the notations, we give in Proposition 1 
a characterization of the fixed points of L, and therefore a model whose 
any fixed point is invariant under the free propagation operator will be 
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called regular. This characterization of the fixed points leads us in Section 2 
to give a first general but natural definition of the global linear 
1-invariants. These are defined as the linear fixed points for the generalized 
process obtained by extending L to the whole set of integrable functions in 
phase space. We show in Proposition 4 that this general definition is equiv- 
alent to the previous one. We then close this section by giving in Proposi- 
tion 5 a practical characterization of the regular 1-invariants. In Section 3 
we show one of the main results of this paper, i.e., that the global linear 
1-invariants of a regular model are regular. We then give practical 
conditions in order to ascertain if a stochastic model is regular. In 
Proposition 13 of Section 5 we extend the class of models which have only 
regular global l-invariants to these which admit what we call a regular 
configuration. The latter class includes most models used for simulating 
hydrodynamics. 

Another part of our program will be to show that all the types of 
dynamic invariants mentioned in the literature (the staggered 
invariants, (15-18) the chessboard invariants, (15) etc.) also all have the same 
status: they are the global linear invariants, but for iterated processes L p. 
We call these global invariants p-invariants. In Section 4, similarly to the 
1-invariants, we define the p-invariants as the "linear fixed points" of L p. 
It turns out that this definition is simply a generalization of what 
d'Humi+res et al. have called (H) global linear invariants with a time period 
p. We then extend the notion of regular invariants to the p-invariants 
through Definition 6 and we show in Proposition 13 that these regular 
invariants are univocally related to the Gibb's equilibrium distribution of 
L p which remain factorized at any time. An interesting result is then given 
in Proposition 7, which states that the p-invariants of a model which obeys 
the testing conditions of Section 3 are all regular. 

Finally, in the examples of Section 6 we take advantage of the charac- 
terizations of the regular invariants given in Propositions 5 and 8 to deter- 
mine analytically the global 1-, 2-, and 3-invariants of some known models. 
We effectively show that the known spurious dynamic invariants (for 
example, the three staggered momenta of the FHP model discovered by 
McNamara and Zanetti (16-18) fall in the class of regular p-invariants 
introduced here. 

1. N O T A T I O N S  

Since we want to derive results which are valid for various models as 
well as for multispeed lattice gases with or without rest particles, (19/ with 
static energy levels, ~2~22) or which "photons, ''~23) we will introduce some 
general notation. Almost everywhere in this paper we will not need 'to 
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specify the details of the microscopic world and thus we will consider a 
"lattice" gas to be given by two finite sets: do, the space of states, with N 
elements; and 5r the set of nodes, with L elements. A configuration is then 
a field n on ~ of elements of d ~ The set of configurations will be called f ' :  
it is the phase space for the considered model. Its microscopic evolution is 
then described by giving an invertible map 5: on f ,  called the free 
propagation operator, and a set of global transition probabilities 
{ d ( n  ~ n ' ) }  from ~K 2 to [0, 1] that characterizes the "collision" process. 
We will further clarify the structure of these objects when needed. In order 
to keep close to the usual notations for stochastic processes, we will use 
integral notations, but all the integrals will be taken the counting measure. 
The { d }  obey the following relations: 

The first relation simply expresses that { d ( n - ~  .)} are probabilities 
and the second is the semi-detailed balance hypothesis. Let us then note 
that deterministic models are described when the range of {d(n- - ,  n')} is 
{0, 1}; the previous relations are then equivalent to the existence of an 
invertible operator :g (the so-called microscopic collision operator) on W 
such that for all n: d ( n  ~ Cg(n)) = 1. We denote @(~K) the set of densities 
on W and we consider the Markov process L: 

f E ~(~#:) ~ L( f ) :  L(f ) (n)  = ~u f ( n '  ) d ( n '  --* 5P- '(n))  dn' (1) 

The relation 

fp+ l(n) = f ~  fe(n') ~4(n' --, 5: l(n)) dn' (2) 

on sequences (fe) on ~( ' /g)  is the Liouville equation of the lattice gas. <24) 
In the deterministic case, relation (1) Simply reduces to L ( f ) ( n ) =  
f(cg-15:- l (n)) .  A stationary solution of (2) is thus a constant sequence 
fp = f where f is a fixed point of 5f. 

The information function H on ~(3q:) is defined by 

H(f )  = J,: f (n )  L o g ( f  (n)) dn 

From the semi-detailed balance and the convexity of x Log x, it 
follows that H(L(f))<~ H( f )  for all f.  Moreover, since x Log x is strictly 
convex on [0, 1], we have the equivalence (see Appendix A): 

H(L(f))  = H(f )  .*~ Vn, n', n" ~ ~U 3 d ( n  --* n') d ( n "  ~ n ' ) [ f (n)  - f ( n " ) ]  = 0 
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Thus, one can show the following proposition, whose proof is given in 
Appendix A: 

Proposition 1. A density f is a fixed point of L if and only if it 
satisfies 

Vn, n ' e  ~ 2  ~ ( n  -+ n ' ) [ f (n )  - f (SP(n ' ) ) ]  = 0 

Let us then introduce a decomposition of :/U in disjoint subsets that 
are similar to the orbits for a deterministic dynamical system. For that 
purpose we will say that two configurations n, m define a "link" {n, m} 
if we have d ( n ~ 5 ~  ~(m))r  or d ( m - - * J  1(n))r We then will say 
that two configurations n, m are connected if there exists a sequence 
no=n, nl ..... n p = m  of configurations (with p~>l)  such that each pair 
{ni, ni+l} is a link. One can verify that the relation "to be connected" on 
~/f is an equivalence relation. The corresponding classes are thus called 
1-paths for the Markov process L. For a deterministic model these 1-paths 
are actually the orbits of the associated dynamical system. The fixed points 
of L are then also characterized by the following result. 

Proposition 2. A density f ~ ~(~#/) is a fixed point of L if and only 
if it is constant on each 1-path. 

We will say that a 1-path is regular if it is invariant under 50 and 
hence we adopt the following definition: 

Defini t ion 1. A model will be called regular if every 1-path of this 
model is regular. 

Let us then note that, following Proposition 2, this definition is equiv- 
alent to the property that every fixed point of L is invariant under 5 e. 
Thus, regular models are of particular interest from a physical point of 
view since one would reasonably expect this last property. Moreover, we 
will see in Section 3 that the global invariants of regular models are 
regular, as stated in the Introduction. Unfortunately, in general any model 
is not regular. Let us observe that in order to have a regular deterministic 
model, the operators ~g and 5 e must satisfy the following property: 

Vn~/K, 3k~ N/<g(5~ 

where cg is the microscopic collision operator introduced previously. For 
instance, a deterministic model where ~2 is the identity map on ~/U (which 
is usually true) is regular if and only if n and <g(n) are o n  the same orbit, 
for any configuration n. 
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For  nondeterministic models we will show in Section 3 that one can 
exhibit a class of regular models by assuming simple conditions on 
transition probabilities. 

2. GLOBAL LINEAR I N V A R I A N T S  A N D  FIXED POINTS OF L 

In the following we wilt need further information on Y and & In 
order to illustrate the notations that will be used, let us consider the case 
of the H P P  (4-6) model (see Section 6) on the periodic 2D square lattice. 
The state of a node e is described (with the usual notations) by four 
Boolean variables: n(~) = (Xl, x2, x 3, X4). For  each j = 1 ..... 4 the condition 
xl = 1 will stand for the presence of a particle with velocity ej at the con- 
sidered node, and xj = 0 for its absence. The free propagat ion operator  5: 
is then defined by giving four permutations p: of 50: pj(e) = c~ - ej such that 
we have 

Vn s ~/U, Vc~ e 5 ~ 5:(n)(~) = (nl(px(~)), nz(p2(~)), n3(P3(C0), n4(P4(~))) 

Thus, in the sequel we will consider O: to be the Cartesian product 
O:~ x o :2 x . . .  x o:b of b finite sets or channe l s  and that the free propagat ion 
operator  5: is prescribed by setting b permutations of 50: p~, P2,..., Pb such 
that 

Vn~//, Vc~50, 5:(n)(~)=(n1(p1(cQ),nz(p2(~)),...,nb(pb(~))) (3) 

where each ns(e ) belongs to O::. This notation takes into account not only 
pure kinetic models like the H P P  model, but also most of the LGA models. 

Let us then observe that if a given O:: has exactly two elements (i.e., 
if there is at most one particle in this channel), it can be identified with the 
set {0, 1 }. This is the case for the usual H P P  or F H P  models. But from 
both theoretical and practical points of view one can allow for more than 
two states in a given channel O::. This can be, for example, the case of 
models with rest particles or with energy levels. Hence, if the number of 
states nj of a channel O:: is not a power of two and if we want a Boolean 
representation of this channel (for computat ional  commodity)  we are led to 
constrain this representation. One can then note that any finite set of nj 
elements can always be identified with the Boolean manifold: 

{ } ( x l ,  x2,. . . ,  xn/) ~ (0 ,  1 }": x i  = 1 (4) 
/ i =  1 

Thus, for the following we will then assume that each o:s is defined by 
the relation (4). This notation generalizes that introduced in previous 
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works (2~22) and allows most models used in the literature to be described. 
One of the advantages of this representation is to avoid taking care of the 
exclusion principle. Let us note that a configuration is then represented by 
a Boolean vector in NNL which always has exactly bL components equal to 
1 and the others equal to 0. The configuration no defined by the following 
relation will be called "empty": 

[no]~(c~) = ~ i l  for all ~, i, j 

The space state ~ is then a subset of ~X, while ~ is a subset of ~NL, 
once an order has been chosen on ~ .  If ~/i is a vector in ~NL, we will 
denote ~(7) the c~th projection of ~ on ~u. The components of ~ [resp. 
of ~(c~)] will be denoted by ~{(~) (resp. ~ ) ,  where c~ varies from 1 to L 
and stands for the nodes, while i = 1 ..... nj stands for the components on ~nj 
with j = 1,..., b. We denote by ( -,. ) the canonical scalar product on both 
~N and ~NL. If ~ is a vector in ~NL we will also denote �9 the linear form 
associated by the relation ~ ( n ) =  ( ~ ,  n).  The free propagation operator 50 
on ~/r as given by the relation (3) induces a linear transformation on ~UZ, 
also denoted 6e, which is defined for each �9 in ~NL by 

~9 ~ ~(~) = (qbl(pl(~)) , ~b2(p2(0~)),..., ~b(pb(~))) 

where each ~J belongs to ~nJ. One can then observe that 6 e is an 
orthogonal map, i.e., 6P-~= 50', or equivalently 

We then assume that the global transition probabilities are con- 
structed from a set of node-independent local transition probabilities: 
,z(X--.X') from g x g  to [0, 1], such that 

d ( n ' ~  n) = ~I ~(n(~) ~ n'(~)) 

We also assume that they satisfy similar relations to the global ones: 

VX f~ a~(X-- X')dX'= 1; fe z~(X'~ X)dX'= 1 

Hence, we have considered that all the nodes are equivalent for the 
collision process. Thus, if ~ is a regular lattice, the subsequent results on 
global invariants will stand for periodic lattices without boundaries. 

We then define, as usual, (11'24) a local linear invariant as follows. 



Global Invariants and Equilibrium States 465 

D e f i n i t i o n  2. A local linear invariant is a vector ~b of ~N that 
satisfies 

VX, Y e # x # ,  ~ ( X o  Y ) ( ( a , X -  Y } = 0  

The scalar product is taken in RN. The local linear invariants con- 
stitute a linear subspace of ~N, denoted ~oc. Now, since Proposition 1 
gives a characterization of the fixed points of L, we adopt the following 
definition of the global linear invariants for the process L: 

D e f i n i t i o n  3. A vector 45 of ~NL will be called a global linear 
1-invariant if it satisfies the relation 

Vn, n'E'?~U 2, d(n-~n ' )~45,  n - 5 ~ ( n ' ) } = 0  

The scalar product is taken in ~NL. The global linear 1-invariants 
constitute then a linear subspace of ~x/~, denoted 3f~lg t. This definition 
agrees with the definition of d'Humi6res et al. (11) for deterministic LGCA 
and corresponds to what they have called global linear invariant with a time 
period 1. In general, although 45 is a global invariant, there is no reason for 
45(~) to be a local invariant. Thus we introduce the following definition: 

D e f i n i t i o n  4. A global 1-invariant will be called regular if its 
projection on each node is a local invariant. 

At each local invariant there is associated a global one 45 defined by 
45(a) = ~b for each node ~. Conversely we have the following result: 

P r o p o s i t i o n  3. The only global 1-invariants such that 45(~)= ~b = 
const at each node are regular: We will call them homogeneous global 
1-invariants. 

This result is an obvious consequence of Lemma 2 given at the end of 
this section. Thus ~1oc is embedded in oU~l and the dimension of 3((lgl is 
always greater than or equal to that of ~1oo. 

One readily sees that the linear form associated with each global 
invariant is constant on every 1-path. Thus, one deduces from Proposi- 
t ion2 that, if 451,452 ..... 45p are p independent global invariants, every 
density f on ~ that satisfies 

Vn E ~/U, f (n )  = g(451(n), 452(n),..., 45p(n)) (5) 

(where g is a positive function on ~P) is a fixed point of L. The converse 
is, in general, wrong. Hence we deduce the following proposition, which 
shows that the previous definition of the global 1-invariants and that given 
in the Introduction are equivalent: 
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P r o p o s i t i o n  4. A vector q~ of NNL is a linear global 1-invariant if 
and only if there exists a constant k such that the density f,  defined for any 
configuration n in ~ by f ( n ) =  k exp(~(n)) (where k is a normalization 
constant), is a fixed point of L. 

This last proposition is general and holds even if the transition 
probabilities are not factorized through the nodes. Let us note that in 
general there may exist nonhomogeneous global linear invariants and 
hence non-spatially-homogeneous fixed points of L. 

Our description of the phase space introduces through Definitions 2 
and 3 some unphysical invariants associated with the constraints 
ZT~ 1 x~ = 1 on each gJ (see, for example, ref. 20). More exactly, let us call 
I(j) the vector of ~N defined by [I(j)]r=6jr (there are exactly b such 
vectors), I(j, c~) the vector of NNL defined by [I(j, c~)](fl)=b~eI(j ), and 
df'g t the subspace generated by the I(j, c~), its dimension being bL. If ~ is 
a vector of )ffgZ, one then deduces from relation (4) that the scalar product 
( 7 t, n )  is a constant independent of the configuration n. Hence •'gt is a 
subspace of ~flt ,  but these invariants do not affect the dynamics of the 
LGA, since the associated linear forms keep constant values on the whole 
phase space. 

We will then call .((d)l the subspace of ~f~l t orthogonal to d(dg l and its 
elements the global dynamical 1-invariants of the automaton. Thus, every 
stationary density given by (5) is in fact only a function of the dynamical 
invariants and the complete determination of the linear 1-invariants of a 
given model reduces to the determination of the dynamical ones. In the 
same way we will divide ~1oo into o~(doc and ~ioc,  where ~ior is generated 
by the vectors I(j). For a pure kinetic model where each ~J has two 
elements, there is then a one-to-one relation betWeen the whole set of 
global dynamical linear invariants and the whole set of global linear 
invariants in the usual representation, since there are no more constraints 
on the entries (see the examples in Section 6). We will then need the 
following lemma: 

I . emma  1. If tb is a vector orthogonal to ~;4rg~ and if we have 
(~b, m i ) = C s t e  for a given configuration mo and for the (NL-bL) 
configurations m; obtained by successively permuting in m o a one and a 
zero node after node and on each gi, then q~ = 0 and Cste = 0. 

Proof Let {mi, i =  1,..., N L - b L }  be the set of the configurations 
obtained by successively permuting in m o a one and a zero node after node 
and on each d~ each mi differs from mo on at most one node and at this 
node on only one of the gJ. If ~ is a vector in ~('gt, we then have 
(gt, m / _ m o  ) = 0  for each i>~ 1. Then the set {m~-mo} is a basis of the 
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subspace orthogonal to -~('gt in ~NL But we then have (~b, m , - m o ) = 0  
for any configuration m~, which implies that q5 is in 3(gt. Thus, since ~b is 
also orthogonal to Xgt,  we have 45 = 0 and Cste = 0. 

This lemma applies in particular to the global dynamical 1-invariants. 
One can then observe that OUlgt is globally invariant under 5 P, while its 

elements are obviously regular. Hence the subspace of ~NL orthogonal to 
X~t (and which contains the dynamical global 1-invariants) is globally 
invariant under 5C But unfortunately without any further hypothesis one 
cannot state that the whole set JCg~ is globally invariant under 5 ~, although 
one would reasonably expect it. The following proposition provides then 
quite a remarkable connection between the regular dynamical 1-invariants 
and the 1-invariants which are 5~-invariant: 

Proposition 5. A global dynamical 1-invariant ~ is regular if and 
only if it satisfies 

5P4~= 

In order to prove this proposition, Lemma 2 shows that any global 
1-invariant which satisfies the condition 5P~b = ~ is regular, so that this 
condition is sufficient. Conversely, if q~ is a regular dynamical 1-invariant, 
then the density f (n )  = k exp(q~(n)) is a fixed point of L. From Definitions 
1 and 2 and since q5 is regular, we deduce that exp(q~(n))= exp(~q~(n)) 
and thus (45 n )  = (SPq~, n )  for any configuration n. Now, since 5 ~ is an 
orthogonal transformation, the lector 5Pq~- q~ remains in the subspace of 
~NL orthogonal to X'g~. We then deduce from Lemma 1 that 5~q~ = q~. 

I_emma 2. Let q~ be a vector in E NL. If 

Vn, n'~:~ 2, ~r n - n ' ) = 0  

then for every node ~, ~(~) is in 3f~loc. 

To prove this lemma, it is sufficient to sum the equality over all 
configurations n, n' such that n ( ~ ) = X  and n ' (~)= F, where ~ is a fixed 
node and X, Y fixed elements in ~. 

Hence, the dynamical regular 1-invariants are the elements of the 
following subspace: 

X~ , I=  {45 ~ ENL/5~q5 = cb and W e ~ ,  45(~) ~ 3ffoc} (6) 

This subspace will then play an essential part in the study of the dynamical 
properties of any LGCA, and it is of particular importance for a given 
model to know if y (~ l  is equal to aug) 1. In fact, as we will see, this is true 
for most models, including the regular ones. 



468 Bernardin 

3. GLOBAL LINEAR 1-1NVARIANTS IN REGULAR MODELS 

We have seen before that the complete determination of ~,ug~t reduces 
to the determination of ~fgdii which always contains JU;'~ I. 

For regular models one can then prove the following proposition, 
which is one of the main results of this section: 

P ropos i t i on  6. All the linear 1-invariants of a regular model are 
regular and the dynamical ones are characterized by the following identity: 

~gd)l= ~,~, 1 (7) 

This result is quite remarkable, since it yields a complete determina- 
tion of the global linear 1-invariants and it also implies that they are 
independent of the details of the collision process as soon as the model is 
regular. This last point was the background hypothesis in the method 
proposed in ref. 16. The main arguments to prove (7) will be the 
J-invariance of the 1-paths and the fact that the global linear invariants 
are constant on every 1-path (see Appendix B). 

However, if the set of paths is only globally invariant under 5 ~ one 
obtains a weaker result, that is, ~ j ) l  (and consequently the whole set Y~t) 
is globally invariant under 5 ~ (see also Appendix B). 

We will show in Section 5 that this proposition can be still extended 
to a larger class of models, including most of the lattice gases used for 
describing hydrodynamics (see Proposition 13). 

Moreover, this characterization of the global invariants for the process 
L can be generalized, at least for a class of stochastic regular models, to 
any process L k, as is shown in Section 4. 

A natural question which then immediately comes in mind is: Is it 
possible to decide whether or not a model is regular without having 
previously determined its invariants? In order to answer this question, we 
will consider the class of models where the global transition probabilities 
obey the three properties: 

(P1) Vn, mE~/U 2, d ( n - * m ) # 0 ~ d ( m ~ n ) # 0  

(P2) ~ r  d ( r ~ n ) # 0 ,  m # r ~ C ( m ~ r ) ~ 0  

(P3) n # m  = ~ r  ~ m )  < 1 

Properties (P1) and (P2) express a kind of microreversibility which is 
satisfied by all usual LGAs [for deterministic models (P2) is true, since 
is invertible, while (P(1)just  imposes that c~2 is the identity map on ~ ,  
which is usually the case for deterministic LGA]. 

Property (P3) expresses the stochasticity of the nontrivial collisions. 
Let us note that it is always possible to modify a given model in order to 
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have (P3) without changing its local invariants or its symmetries. Let us 
also note that, for deterministic models, (P3) is uninteresting since it leads 
to only trivial collisions. 

The following proposition provides then'an answer to the previous 
question: 

Proposition 7. Any model which satisfies the three properties 
(P1)-(P3) is regular. 

This result is rather remarkable since it only involves the collision 
process and not the propagation operator itself nor the topological details 
.of the paths. The main argument to prove this comes from the fact that 
the phase space is finite, which leads us to establish that for every initial 
density fo we have (see Appendix C) 

Ve>0, 3 N e N ; p > ~ N ~ V n 6 ~ :  Ifp+~(Se(n))-fp(n)l <~e (8) 

The proof is achieved by setting f0 as a fixed point of L. We then have 
fp = f0 for any order p. By applying (8) to the corresponding sequence (fp) 
we then finally obtained that fo is invariant under 5C Hence, models which 
obey (P1)-(P3) are regular. 

Relation (8) simply expresses that the effect of the collisions fades as 
time goes on, and thus the process tends to be only propagative. 

Also notice that (8) yields the following relation for any finite 
integer k: 

Vs>O, 3Ne N; p >~N~Vn E ~U: [fp+k(Sek(n))--fp(n)[ <~ke 

and thus for these models, the fixed points of L A- are invariant under 5 ek. 
We do not know if this remains true or not for all regular models. 

4. G E N E R A L I Z A T I O N  TO L k 

In order to apply to the process L k the same treatment as to L, let us 
define the transition probabilities of order k, ~r by 

dk(n -* n') = f~k-, d ( n  -~ ~-1(n I ) )  d ( n l  -~ ~ '(n2))---d(nk_2 ~ n') 

xdn I dn2.-.dnk , 

with the convention . ~ r  The { d k ( n ~ - ) }  are 
probabilities on ~ and they also obey a semi-detailed balance. We have 

Lk(f)(n) = , [  f (n ' )  dk (n '  ~ 5 p - ' (n ) )  dn' Jr162 
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Let us then note that L k is expressed with the transition probabilities 
of order k by replacing in the definition (1) of L, .~ by d k. Thus, in the 
same way as for L, we can associate to U a set of paths and a set of global 
linear invariants f ~ t .  The first will be called k-paths and the second, 
global linear k-invariants. We then have the following definition: 

Def in i t ion  5. A vector ~b of ~NL will be called global linear 
k-invariant for k ~> 1 if it satisfies the relation 

Vn, n'e~W 2, d k ( n ~ n ' ) < ~ , n - - 5 ~ ( n ' ) ) ) = 0  

In the deterministic case these k-invariants are exactly what 
d'Humi6res et al/n) have called global linear invariant with a time period k. 

Moreover, as for L, a density f will be a fixed point of L ~ if and only 
if it is constant on each k-path. Hence, from Definition 5 one can see that 
the linear form associated with any global k-invariant is constant on every 
k-path. Thus, if ~1, ~2  ..... (Pp are p independent global k-invariants, every 
density f on ~W which satisfies 

Vn e"/U, / ( n )  =g(~l (n) ,  ~b2(n),... , ~p(n)) (9) 

(where g is a positive function on NP) is a fixed point of L ~. Any 
1-invariant is obviously a global linear k-invariant and thus :f'xl is included 
in x(f~l for any k. We then denote by :fgd)k the subspace of Xgkt orthogonal 
to ~((gt; its elements will be called the global dynamical k-invariants of the 
automaton. Thus, every stationary density given by (9) is in fact only a 
function of the dynamical k-invariants and the complete determination of 
the k-invariants reduces to the determination of ~((gd)k. 

Note that any fixed point of L k (k ~> 1) is also a fixed point of L ik for 
any integer i. The same is true for the global linear k-invariants. Thus, a 
linear global k-invariant which is not a global invariant for any other 
process L r with r < k  will be called a specific k-invariant. We then 
generalize the concept of regular invariant to the k-invariants through the 
following definition: 

D e f i n i t i o n  6. A global k-invariant will be called regular if at each 
node :~ the projections qs(~), 5~(e), . . . ,  5~k-1~(c~ ) are local invariants. 

The regular k-invariants will play, like the regular 1-invariants for the 
process L, an important role in the application of the linear response 
theory to L k. Indeed, as we will see in the next section (at least for a wide 
class of models) they univocally define the fixed points of L k which remain 
factorized at any time (see Proposition 13). Any element of ~ t  is 
obviously a regular k-invariant, while the regular dynamical k-invariants 
are characterized by the following proposition: 
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P r o p o s i t i o n  8. A regular dynamical k-invariant @ necessarily 
satisfies 

5pk~ = q~ 

We will prove this result in the next section. Thus, the regular 
dynamical k-invariants are the elements of the following subspace: 

Ss~'[ = {~  e RNL/5~q~ = q5 and Vc~ e Y,  q~(~), 5tq~(~) ..... 5 Pk-- ~ ( ~ )  e guyot } 

(10) 

This set always contains g(-g,x and it is simply a generalization of this 
last set. A regular k-invariant which is also an r-invariant with r < k is 
obviously a regular r-invariant, and moreover, from Proposition 8, if r and 
k are two prime integers, then it is simply a (regular) 1-invariant. Conver- 
sely, if k is a prime integer, any regular k-invariant which is not a 
1-invariant is necessarily a specific k-invariant. The following proposition 
then provides quite a remarkable result: 

Proposition 9. The global linear k-invariants of a model which 
obeys the three properties (P1)-(P3) are regular and its dynamical ones are 
characterized by the identity 

2 / { - a , •  ~/.s,k (11) 
g l  ~ ~ g l  

The proof is given in Appendix D, but since it is a little lengthy, we 
have limited it to the case k = 2. As later illustrated on the examples in 
Section 6, the subspace Cfg'[ contains, according to the model and the 
values of k, the so-called dynamic staggered invariants (15-~7) and also the 
line and chessboard invariants. Ils) Thus, they all have the same status: they 
are regular k-invariants (usually k = 2). Hence we suspect that Proposi- 
t ion9 holds for all regular models, but this remains a conjecture. 
Nevertheless, at least for models which obey (P1)-(P3) one is then 
theoretically able to determine all the linear invariants at any order: 
Moreover, if ~b is a global k-invariant, then {q~, 5g~,..., 5~ k- 1</>} are also 
/-invariants but not necessarily independent, even if q5 is a specific 
k-invariant (see, for example, the 2-invariants of the HPP models). 

At each permutation p on the nodes 5O we can associate a permuta- 
tion on ~ defined by p(n)(cQ = n(p(~)). The factorization of the global 
transition probabilities into local ones imposes the invariance of these 
global transition probabilities under any permutation of 5O. Hence the 
transition probabilities of any order k are invariant under each permuta- 
tion p of 5 ~ which commutes with each p; in the definition of 5e, i.e., 
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dk(n  ~ n ' ) = d k ( p ( n ) ~ p ( n ' ) ) .  Thus, the set of k-paths, for any k, is 
globally invariant under the group of the permutations which commute 
with each Pi. Consequently, since p induces an orthogonal transformation 
on ~N/~ defined by p(~b)(~)= q~(p(cQ), the sets sUgk,, Sga) ~, J~ff'g,, Ssg'[ are 
also globally invariant under the group of the permutations which 
commute with each p~. For usual lattice gases on regular periodic lattices 
this implies that these sets are invariant under the translation group of the 
lattice. This translation invariance has been largely investigated in ref. 11, 
where it is the basic ingredient of the method proposed by the authors in 
order to determine the global linear invariants. 

Let us conclude this section with some general remarks: 

1. The fixed points of L k cannot be distinguished from those of L 
with an entropy criterion. 

2. If fo is a fixed point of L k, then f l ,  f2 ..... fk ~ are also fixed points 
of L k and the density (fo + f l  + "'" +fk  ~)/k is then a fixed point of L. 
Moreover, if fo is specific to L k (i.e., it is not a fixed point of another 
process L r with r < k), then fo, f t  ..... f k -  1 are k different and specific fixed 
points of L k. 

3. For a model which obeys (P1)-(P3) one deduces from (8) that if 
some fixed point of L k is invariant under 5 e, then it is simply a fixed point 
of L. So, if k and l are two prime integers, the only common fixed points 
of L k and U are fixed points of L. The same holds of course for the global 
linear invariants. However, this last result is always true for deterministic 
models, since 5ecd is invertible. 

5. G I B B S  D E N S I T I E S  FOR L k 

The notations are those introduced in Section 2. We will denote by E 
nj j _ _  the set of vectors ~b ~ ~N such that each ~b,J. " is in ]0, 1 [- with Z~= t ~bi - 1 for 

all j. At each density on ~ we can associate a mean population vector field ' 
N ~ E L defined by 

Vi, j, c~, NJi(~)= f~  nj(ct) f (n )  dn 

If N e E  L, we will denote by Log(N) the vector in ENL whose 
components are Log(N~(a)). A density f on ~ will be called factorized if 
it is factorized over all states and nodes. Thus it is given by 

b 

f (n )  = [ I '  I~ " I~ �9 [N{(~)] "~(~') (12) 
j = l  i - -1  
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where N is its mean population field. It will be called homogeneous if N(~) 
is constant over the nodes. Hence any strictly positive [i.e., f (n)  > 0 for all 
n] factorized density f can always be written under the following form: 

f(n)  = exp( (Log(N), n ))  (13) 

where N is its mean population field. 
The following proposition characterizes the factorized fixed points 

of Lk: 

P ropos i t i on  10. A (strictly positive) factorized density f is a fixed 
point of L ~ if and only if there exists a global linear k-invariant q5 and a 
constant k such that 

Vn~/K, f ( n )=kexp ( (q s ,  , ) )  (14) 

The proposition is a direct consequence of relation (13) and of the 
characterization of the fixed points. Moreover, since it is known from 
information theory that the information of a factorized density is lower 
than that of any other with the same mean population field, the factorized 
fixed points of L k appear as the Gibbs microcanonical distribution for 
this process. We will call them global k-equilibrium distributions. The 
homogeneous ones which are usually considered are then those associated 
with homogeneous global invariants: they are factorized fixed points for all 
processes L ~. In relation (14) the couple (k, ~)  is unique when 45 is a 
dynamical k-invariant. One then deduces from (13) and (14) that a (strictly 
positive) factorized density is a global k-equilibrium distribution if and 
only if the vector Log(N) is a global linear k-invariant. These k-equilibrium 
distributions are one-to-one related to the mean values of the global 
k-invariants, as stated in the following proposition: 

Propos i t ion  10 bis. Let N be a vector in E L (i.e., a strictly positive 
mean population field). There then exists a unique field Neq in E L which 
satisfies 

and such that the distribution f (n)=exp( (Log(N~q) ,n) )  is a global 
k-equilibrium distribution. 

A proof of this result, based on asymptotic properties of algebroid 
functions, is given in ref. 25, but a direct proof for LGAs which only uses 
the convexity of the information function is proposed in ref. 28. In other 
words, this proposition states that there is a one-to-one correspondence 

822/68/3-4-9 
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between the mean values of the global conserved quantities and the 
thermodynamic variables of the LGCA. 

It is easy to prove the existence of fixed points which are not just 
functions of the global linear invariants and hence, in general, there exist 
fixed points which are not equilibrium distributions. 

If f is factorized, we always have the following identity: 

f [ L ( f ) ( J n ) - f ( n ) ]  MoO dn 

b n j  

= ~  ~z(X--. Y ) ( Y - X )  lq " I~ " [N~(~)] x l d X d Y  (15) 
J ,  

The rhs of (15), which is similar to the Boltzmann collision integral, 
only depends on N(~) and it will be denoted 6(N(~)). If N is a vector 
in E, the following propositions which characterize the homogeneous 
factorized fixed points of L are then equivalent: 

(a) ~(N)=0 

(b) L o g ( N ) ~ o ~  

(c) < 6 ( N ) , L o g ( N ) ) = 0  

(d) f ( n ) = l q .  " l~ [N~]  "II~ i sa f ixedpoin tofL  
j = l  i = l  

(16) 

The result is based on the semi-detailed balance hypothesis and hence 
it holds for any model. A proof can be deduced from ref. 25 with only 
slight modifications (see Appendix E). This is a generalization of similar 
equivalences (24) for models with a single speed. For a regular model the 
following characterization of the 1-equilibrium distributions holds: 

P ropos i t i on  11. Let L be the Markov operator of a regular model. 
Then a factorized strictly positive density f is a fixed point of L if and only 
the vector N satisfies 

5 P N = N  (17) 

Log(N(.)) r J'((~or V~ (18) 

Indeed, from (13) any factorized density which obeys (17) and (18) 
obviously satisfies the condition of Proposition 1. Conversely, if f is a 
factorized fixed point of a regular model, we deduce from Propositions 10 
and 6 that (18) is true, so that relations (15) and (16) yield (17). 

Let us then note that if a factorized density satisfies (18), then the 
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density L(f) is also factorized and its mean population field is &~ 
Similarly, if ~b is a regular dynamical k-invariant, then the density f (n )  = 
k exp((q~, n ) )  (where k is a normalization constant) is a k-equilibrium 
distribution. But since tb is regular, the successive powers Li(f) are 
factorized and we have 

Lk(f)(n) = k  exp((SPk~, n ) )  

Hence we deduce that 5e~b = ~b, which proves Proposition 8. 
Thus, for a model which obeys (P1)-(P3), its global k-equilibrium 

,distributions remain factorized (i.e., k-equilibrium) at any time. 
In order to point out another class of models which obey Proposi- 

tion 11 and hence Proposition 6, let us introduce the following definitions. 
If a configuration n satisfies 5e(n)= n and sg(n ~ n ) =  1 we will say 

that it is stationary (this implies that the 1-path which contains n is 
reduced to n). We will then say that a stationary configuration n is regular 
if any other configuration n', such that n' differs from n on at most one 
node and at this node on at most one of the g J, satisfies sr --+ n') -- 1. 

For the usual LGA models where all the particles have the same mass 
if the local collisions conserve mass and momentum (and energy for models 
with massless particles(ZW22)), the empty configuration is regular. The same 
is true for models with particles of different masses if the partial masses [26) 
are conserved: Most models used to describe hydrodynamics fall in this 
category. 

Interesting results concerning the global linear invariants of models 
which admit a regular configuration come from the following proposition: 

Proposi t ion 12. Let L be the Markov operator of a model which 
has a regular configuration. And let f be a strictly positive factorized 
density with a mean population field N. Then the density L(f) is also 
factorized if and only if 

V~, Log(N(~))~Jlloc 

For these conditions, the mean population field of L(f) is 5PN. 

When f is factorized as noted previously, condition (18) is obviously 
sufficient for L(f) also to be factorized. This proposition states that the 
converse is true if the model admits a regular configuration. A proof is 
given in Appendix E. As a corollary, one deduces that Proposition 11 and 
therefore Proposition 6 hold for models which have a regular configuration. 
Thus we have the following result: 

Proposi t ion 13. Let L be the Markov operator of a model which 
has a regular configuration; then: 
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(i) A factorized strictly positive density f is a fixed point of L if and 
only the vector N satisfies relations (17) and (18). 

(ii) All the linear 1-invariants of this model are regular and the 
dynamical ones are characterized by the identity (7): 

1 = 

(iii) More generally, a k-equilibrium distribution is factorized at any 
time if and only if the vector Log(N) is a regular k-invariant. It then 
satisfies 5e~N = N. 

Indeed, (i) and (iii) are direct consequences of Proposition 12 and (i) 
obviously implies (ii). Moreover, one can prove (see also Appendix E) that 
each global dynamical k-invariant of such a model is invariant under 5 ak 
(but unfortunately not necessarily regular). Hence, for these models the 
k-equilibrium distributions are invariant under y k  [this last result and 
points (i) and (ii) of Proposition 13 also hold under the weaker condition 
obtained by substituting into the definition of a regular configuration the 
condition ~ ' ( n ' ~ n ' ) ~ 0  with d ( n ' ~ n ' ) =  1]. Unfortunately, since in 
general the partition of the phase space induced by the global linear 
1-invariants does not coincide with the 1-paths (it only contains them), 
these models are not necessarily regular. 

We conclude this section with a remark on the connection between the 
nonhomogeneous global 1-invariants in a regular model and its Green's 
correlation function. Let (~b~,..., ~b r) be a basis of the local invariants, and let 
(~b~,..., ~r, .... q~r+s) be a basis for the global linear 1-invariants; since the 
model is regular, we then have for each ~J and each node 

qsJ(c~) = ~ a~(c~)~b ~ 
i = 1  

Hence, in such a system any 1-equilibrium distribution, characterized 
by the thermodynamic variables (2a ..... 2 , . . ,  2r+s) associated to all the 
previous global 1-invariants, can always be rewritten under the form 
kexp[Y',,Z~=l Zi(o~)(~ hi, n(e))] ,  where the Zi(~) a r e  given by 
Zi(a)=Z~+ ~ a~(c~)Aj. In this last expression the thermodynamic variables 
associated to the nonhomogeneous conserved quantities are hidden and 
spatial variations are introduced in the remaining ones. One is then led to 
evaluate the Green's function with this nonhomogeneous equilibrium dis- 
tribution which can nevertheless be inverted in Fourier space: The usual 
Green-Kubo procedure can then be performed. But the spatial variations 
of the conserved densities coming from the inhomogeneity of the final 
equilibrium state yields a modification of the transport equations as shown 
in refs. 10 and 17. 
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6. E X A M P L E S  

In this section we will illustrate the previous results by determining the 
global linear invariants for some known LGA models on the square and 
hexagonal 2D lattices. We will illustrate in detail the case of the H P P  
model, which can be considered as a paradigm. In the usual models there 
is at most one particle with a given velocity c: at a given node; thus, in our 
representation of the phase space the corresponding gJ has only two 
elements, (0, 1) and (1, 0), and it can be identified with the set {0, 1}. In 
,doing this identification we recover the usual notations for the LGCA. For 
example, with a pure kinetic model where each d ~ has two elements this 
identification maps the whole set of global dynamical linear invariants with 
the whole set of global linear invariants in the usual representation, since 
there are no longer constraints on the coordinates. 

6.1. Global Invariants for HPP Models  

6.1.1. Global 1-1nvariants for the Process L. The H P P  model 
is the simplest 2D model, introduced by Hardy et al.,(4-6) where four kinds 
of moving particles are considered on a periodic square lattice 5O, with q 
lines and p columns. Each node is identified with the vector a i + b j  
(p ~> a ~> 1, q ~> b ~> 1 ), where i and j are two orthogonat unit vectors. The 
space of states g is the Cartesian product g l  x if2 X g3 X g 4  of four identical 
Boolean manifolds: 

~ 2 = ~ 2 = ~ 3 = E 4 =  {(xa, Xz)E {0, 1}2/x~ +x2 = 1} = {(1, 0), (0, 1)} 

For each gJ the state (0, 1) will stand for the presence of a particle of 
velocity e / a t  the considered node, and the state (1, 0) for its absence. Here 
e~ = i, e 2 = j ,  e3 = - - i ,  e 4 = - - j .  The particles all have the same mass m, the 
iteration time being the unit of time. The free propagation operator 5: is 
defined as in Section 2 by giving four permutations p: of 5~ 

p:(ai + bj) = (ai + bj) - cj 

In this relation two vectors ( a i + b j )  and (a ' i+  b'j) are identified if 
( a - a ' )  is a multiple of p while ( b - b ' )  is a multiple of q. If (X1, X2, X3, 
X4, Xs, )(6, ii7, X8) is the state of the node ~, the total mass re(e) and the 
total momentum p(e) are given by 

m(o~) = m ( X  2 + X- 4 --t- X 6 + X8) =4m - m ( X  1 + X 3 Jr X 5 ..t- X7) 

p(~) = m(X2el + X4e2 + X6e3 + Xse4) = -m(XtCl  + X3c2 + X5c3 + Xve4) 
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The set ~{0o is then generated by the four following vectors of Ns: 
(1, 1, 0, 0, 0, 0, 0, 0), (0,0,  1, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, 0, 0), (0,0,  
0, 0, 0, 0, 1, 1). 

Thus, since the local dynamical invariants are orthogonal to .~oo, 
they are included in the following subspace of ~8: 

{( --X 1, Xl, --X2, X2, --X3, X3, --X4, X4) ; (Xl, X2, X3, X4) E ~4} 

Now if we identify this subspace with N4 and each gJ with {0, 1} [by 
mapping (0, 1) onto 1 and (1, 0) onto 0], we recover the usual notation for 
the H P P  model, and thus the usual local invariants are precisely the local 
dynamical invariants in our notation. Thus, in order to simplify the nota- 
tion, we will use this identification. 

In the H P P  model, the local collisions preserve the total mass and the 
total momentum at each node and thus the set f ( o c  is generated by the 
three vectors of R4: 

I~=  (1, 1, 1, 1), I 2 =  (1, 0, - 1, 0), I 3 =  (0, 1, 0 , - l )  

One can observe that the empty configuration is regular and thus the 
set of all global dynamical 1-invariants is simply given by Proposition 13. 
Let then ~b be a global dynamical invariant. Its projection qs(~) at each 
node is identified with the vector (q51(e), r162 q53(~), ~b4(e)) of N4, and 
so there exists a field ((21(:0, 22(0r ,~3(~X)) of real numbers such that 

V~: q~(~) = 21(:011 + 22(~)I2 q- )],3(~)13 (19) 

We now have to determine the 2i(:~) in order to satisfy 5~q5 = qs. 
This can be done analytically and after some algebra one finds that the 

following conditions are necessary and sufficient: 

Ve, a, 22(e) = 22(:r + ai) = 22(L~) 

w ,  b, ,t3(,) = ,?(~ + hi) = ,~3(G) 

where L~ (resp. Ca) is the line (resp. the column) with contains ~. Hence 
there are (p+q)+ 1 independent global dynamical invariants for the 
process L. One of them corresponds to the conservation of the total 
mass and the other, which was already found by HPP,  corresponds to the 
conservation of the x (resp. y) component of the momentum along the 
lines (resp. the columns). 
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6.1.2.  G loba l  2 -1nvar iants  f o r  L 2. In order to determine all the 
global dynamical invariants of L 2 we now assume that the collision rules 
are chosen such that the model satisfies (P1)-(P3) and thus Proposition 9 
holds. We then start with relation (19), and we have to determine the field 
((LI(~), Z2(~), Z3(~)) such that j 2 ~  = ~ and 5~q~(~) is in af~o c. One then 
observes that 5~2is deduced from ~ by replacing each permutation pj 
by p2. One can then divide the lattice s into four subsets, s 2'1, s 
and s 3 , with s  s  s 
{ (2a + 1)i + 2bj }, and s = {2ai + (2b + 1 )j }, each of them being invariant 
under any p2. Thus, from the previous results we deduce that if a given 
node e belongs to ~ ,  we then have 

= 

where g~ (resp. C~) is the line (resp. the column) which contains ~. Then 
the condition 5 '~ (~)~  Xdoo only imposes that Zg = 2], 22 ~ = z3 .-1 Note that 
there is no coupling between the mass and the momentum coefficients. 

Now the number of independent coefficients depends on the parity of 
p and q. Indeed, if the number of lines (resp. of columns) is odd, then 
s163 and s =s (resp. s  and s =s thus, all the 2~ are 
equal, and to a given line (resp. a given column) there is associated only 
one 22 (resp. one 23). Thus, there are at most 2 ( p + q ) + 2  independent 
global dynamical linear 2-invariants: (p + q) + 1 of them can be chosen as 
the linear invariants associated with the process L mentioned in the pre- 
vious section; the others are specific to L 2. These supplementary invariants 
are necessarily nonhomogeneous, and their existence depends on the parity 
of p and q: 

1. If p and q are even, one of them is a mass invariant and 
corresponds to the following conserved quantity: 

Y, ( -  1)~(i+*)m(~) (20) 
c ( ~ f g  a 

This states that the total mass of the particles which lie on ~o w s (or 
on s s is conserved on even times, and thus it can be viewed as a 
"chessboard invariant" as defined in ref. 15, The other (p + q) invariants 
correspond to conservation of the x (resp. y) component of the momen- 
tum, staggered along lines (resp. columns). 

2. If p (resp. q) is odd, (20) is no longer a conserved quantity. 
There are then q (resp. p) specific 2-invariants which correspond to the 
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conservation of the y (resp. x) component of the momentum, staggered 
along columns (resp. lines). 

3. If p and q are odd, there are no specific 2-invariants. 

Let us then note that (20) is also conserved by any process L 2k since 
any fixed point of L 2 is obviously a fixed point of L 2k. In other words, it 
keeps a constant value on any configuration obtained after an even number 
of iterations of the automaton. Thus, some authors have denoted this 
conserved quantity on even "times" k by 

(--lff ~ (-1)~(i+i)m(~) 

This kind of conserved quantity has been called a dynamic staggered 
(global) invariant. In fact, these dynamic staggered invariants always 
appeard as linear 2-invariants; they are one-to-one related to the Gibbs 
distribution of L 2. If we denote by ~b the staggered mass 2-invariant, one 
observes that, although q~ is a specific 2-invariant, ~b and 5P~b are not 
independent, since 5~q~ = - ~ .  

6.1.3. Global 3-1nvariants for  L 3. The analysis is similar to the 
case of the 2-invariants. We again start with relation (19), and we have to 
determine the field ((21(~), 22(~), 23(~)) such that 5~2q~= ~ and that 
5~ and 5p-lq~(~) are in •doo. We divide the lattice into nine subsets, 
each invariant under any p~. Under the condition 5~3q~= ~ the field 
{2~(~)} depends at most on 3 ( p + q ) + 9  independent values: There are 
nine mass coefficients and 3(p + q) momentum coefficients. The remaining 
conditions reduce to five the maximum number of independent mass coef- 
ficients and to (p + q) + 4 the maximum number of momentum coefficients. 
There is no coupling between these two classes. Since we know that ~rg~ 
always contains ~g ' /  there are then at most eight specific independent 
3-invariants which are not 1-invariants or 2-invariants: four of them are 
mass invariants, the other are momentum invariants. Once we know this, 
it is very simple to exhibit them. Indeed, let us consider the following 
subsets: 

~q~4= {ai + b j / (a -b )=O (3)) 

~r = {ai + bj/(a - b) = 1 (3)) 

~6 = {ai + b j / ( a - b ) -  2 (3)} 

~7 = { a i + b j / ( a + b ) - O  (3)} 

= { a i + b j / ( a + b ) -  1 (3)} 

~9 = {al + bj/(a + b) - 2 (3)} 
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The following quantities are then 3-invariants (one can also deduce 
them from symmetry conditions): 

m(cQ, i =  4 ..... 9 

p(c~) �9 (i +j) ,  i = 4  ..... 6 

p(~). ( i - j ) ,  i =  7 ..... 9 

Only eight of them can be specific, since the total mass and momen- 
tum on the whole lattice are conserved at any order. 

Hence, if p or q is not a multiple of 3, all the ~ are merged into LP 
and there are no specific 3-invariants (all the mentioned quantities are 
equal and 1-invariants) conversely if p and q are multiples of three, these 
quantities are independent, and there are effectively eight specific 
3-invariants. 

6.2. Global Invariants for  9 -Bi t  Models  on the Square Lattice 

This model was initially introduced by d'Humi6res and Lallemand (8) 
in order to make fourth-order tensors isotropic. It is an extension of the 
H P P  model obtained by adding four kinds of moving particles with speed 
x/2 and one rest particle. Thus, we will simply extend the notations of the 
previous section: ~1, 82, ~o3, ~4 will represent the particles with speed 1, eg 5, 
g6, gT, g8 those with speed x/~, and g9 the rest particle. We will set 
e5 = i + j, e 6 = - i  + j, c7 = i -  j, and c8 = i - j .  The total mass re(e), the total 
momentum p(c~), and the total energy e(~) are 

m(e) = m(2"  2 + X 4 @ X 6 .-]- X 8 -+- .e~lO + X12 + X14 + ~16 + X18) 

p(~)  ----- m ( X l C  1 -t- X4e  2 -~- 2"6 e3 -~/1(8e4 + 2"10e5 -Jr- 2"12c6 -~- 2"14e7 -t- 2"16c8) 

2e(~) = m[(X2 + 2"4 + X6 + 2"8) + 2(X10 + Xt2 + X~4 + 2"16)] 

Now we identify each gJ with {0, 1} [by mapping (0, 1) onto 1 and (1, 0) 
onto 0]. We assume that the local collisions preserve the total mass, the 
total momentum, and the total kinetic energy at each node and thus the set 
X~o c is (after identification) generated by the four vectors of ~9: 

11= (1, 1, 1, 1, 1, 1, 1,,1, 1) 

I2=  (1, 0, --1,0,  1, --1, --1, t, 0) 

I3---(0 , 1,0, --1, 1, 1, --1, - -1 ,0)  

I4=  (1, 1, 1, 1 , 2 , 2 , 2 , 2 , 0 )  
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The empty configuration is regular and thus the set of all global 
dynamical invariants is simply given by Proposition 13. Let then q~ be a 
global dynamical invariant; its projection q~(e) at each node is identified 
with a vector of ~9 and there then exists a field ((21(~), 22(~), 23(~), 24(c~)) 
of real numbers such that 

V~: 4~(e) = 21(e)I1 + 2z(e)l 2 + 23(e)I3 + 24(e)I4 

We now have to determine the 2i(~) in order to satisfy 5:q~ = 60. After some 
algebra one finds that 22(e)= 2 2 and 23(c~)= 23 are constant on the whole 
lattice, while the 21(e) and ~4(~) are constant if p or q is odd and they 
depend on three parameters when p and q are even. Thus, in this last case, 
in addition to the four homogeneous invariants, there is a nonhomo- 
geneous global 1-invariant which is a geometric staggered invariant and 
corresponds to the conservation of the following quantity: 

( - 1 ) ~ ( i + J l [ m ( ~ ) - 2 e ( ~ ) ]  

One can also look for the global 2-invariants as in the case of the HPP 
model. They are all determined by Proposition 9, provided we assume 
properties (P1)-(P3). The analysis shows that there are then only two 
possible specific 2-invariants associated to the following quanties: 

P l =  ~ ( - 1 )~ iP (~ )  "i 

P2 = ~] ( - -1)~Jp(~) ' j  

where are dynamic staggered momenta; pl (resp. P2) is defined if the 
number of columns (resp. the number of lines) is even. 

6.3. Global Invariants for Some Mode l  on the Hexagonbal  
Lattice 

The first model that we examine is a 12-bit extension of the FHP 
model obtained by adding six moving particles with mass m2 and speed 
to the initial six particles with mass ml and speed 1. In addition to the total 
mass and the total momentum, the local collisions also preserve the partial 
mass of each moving species. These models are then comparable to the 
eight-bit models on the square lattice. They are suitable to describe mass 
diffusion processes, as shown in refs. 21 and 26, where some examples are 
given in detail. The notations are similar to those of Section 6.1: Each node 
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is identified with the vector ae~+be2 (p>~a>~ 1, q>~b>~ 1), where el = i  
and e2 = ( i+  x/3j)/2. The velocities of particles with speed 1 are el,..., e6 
and of those with speed ~ are e7,..., %2. The first set (resp. the second) 
is obtained by successively rotating e~ (resp. e~+e2) by ~/3. One can 
observe that the empty configuration is again regular and thus the global 
1-invariants are deduced from Proposition 13. If we set m 1 ---- 2m2, we can 
choose local collisions such that they preserve the two partial masses and 
the total momentum at each node without other spurious local invariants. 
Hence the set Y~aoo is (after identification) generated by the four vectors 
of ~12: 

I1 = (1, 1, 1, 1, 1, 1;0, 0, 0, 0, 0, 0) 

I 2 :  (0, 0, 0, 0, 0, 0; 1 , 1, 1, 1, 1, 1) 

I3 = (2, 1, - 1 ,  - 2 ,  - 1 ,  1; 1,0, - 1 ,  - 1 , 0 ,  1) 

I4=(0 ,  3, 3, 0, - 3 ,  - 3 ;  1, 2, 1, - 1 ,  - 2 ,  - 1 )  

where I1 (resp. I2) correspond to the mass of the slow (resp. the fast) 
particles and I3 and I 4 to the components of the momentum. 

The analysis is then similar to the previous cases; we divide the lattice 
into the three following subsets: 

So = {ael + beZ/(a - b) =- 0 (3)} 

5f1= {ael + b % / ( a - b ) - 1  (3)} (21) 

s = {ael + bez/(a - b) - 2 (3)} 

After some algebra, one finds that all the global linear dynamical 
1-invariants are generated by the three homogeneous invariants associated 
to I1, I3, and | 4  and by three others associated to the conservation of the 
fast particles on the subsets (21): 

m2(~), i = 0, 1, 2 (22) 

Hence, if p or q is not a multiple of 3, all the ~,. are merged into 5~ 
and there are only four independent global dynamical invariants, which are 
homogeneous [in fact, the quantities defined by (22) are all equal to the 
total mass of fast particles on the whole lattice ]. Conversely, if p and q are 
multiples of three, (22) defines three independent quantities and there are 
effectively six 1-invariants: two nonhomogeneous ones, which correspond 
to the conservation of the mass of fast particles on each ~ ,  and the four 
homogeneous ones. In particular this implies that there is no non- 
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homogeneous global 1-invariant in the FHP model. A simple analysis 
shows that the only global 2-invariants of the FHP model (given by 
Proposition 9) are the three homogeneous 1-invariants and, depending on 
the parity of p and q, the three following (now well known) dynamical 
staggered momenta (16 18): 

p,= S c'  

where (c i, c i+ l) is for each i the dual basis of (ee, ei+l). However, these 
staggered 2-invariants disappear in the 12-bit model, in which there are no 
specific 2-invariants. 

Some variants of these models are models with temperature, which are 
simply obtained by setting m I = m  2 and adding static energy levels (see 
refs. 20-22 for details and examples). The local collisions can be set such 
that they preserve the total mass, the total momentum, and the total 
energy at each node without spurious local invariants. The empty 
configuration is regular and thus the set of all global dynamical invariants 
is again given by Proposition 13. The analysis shows that in addition to the 
four homogeneous global invariants, if and only if p and q are multiples 
of three, these models admit two supplementary independent non- 
homogeneous invariants associated to the conservation of the following 
quantities: 

[m(c~) - 2e(c0], i=  0, 1, 2 (23) 

I 

where the subsets L~ are given by (21). Note the similarity with the 9-bit 
model. 

Other models with temperature can be built by adding particles with 
higher speed. (27) One of the simplest is constructed by adding six moving 
particles with speed 2 (the velocity set is generated by rotating 2el) and a 
rest particle. All particles have the same mass and the local collisions can 
be set such that they preserve the total mass, the total momentum, and the 
total kinetic energy. The addition of particles with speed 2 breaks the 
conservation of the quantities (23) and in this 19-bit model the only global 
1-invariants are the homogeneous ones. If instead of adding particles with 
speed 2 we had added particles with speed 3, the nonhomogeneous 
invariants would not vanish. Nevertheless, in numerical simulations, since 
the system evolves in fact on only one particular 1-path, the preparation of 
the initial state will be crucial in order to obtain dynamics not affected 
by (23). 



Global Invariants and Equilibrium States 485 

7. CONCLUSION 

In this study we have pointed out the important part played by the 
regular global invariants. But in order to obtain LGCA models which 
produce the same hydrodynamics as real fluids one needs the global 
k-invariants to be all homogeneous, which guarantees that any k-equi- 
librium distribution is a fixed point of L. The first step is to be sure that 
the global k-invariants are regular, which is provided, for example, by 
Proposition 9. The second is to guarantee the absence of any specific 
regular k-invariants for k > 1. This seems to be achieved by suitable choice 
of the periods and of the velocity set, but may require further improvement. 
Lastly we have to eliminate the nonhomogeneous 1-invariants, whose 
existence seems to be related to the choice of the lattice. 

APPENDIX A 

Proof of Proposition 1. We can write 

H(L(f)) -- H(f)  

From the convexity of x Log x and the semi-detailed balance, we deduce 
that the term between the {.} in the integral is negative, thus we have 
H(L(f)) <<.H(f) for all f. Moreover, H(L( f ) )=N( f ) imposes  that this 
term is zero for all n. But x Log x is strictly convex, that is, 

i 

We then deduce [by replacing 5 e - l (n)  by n in the above expression] that 

Vn, n ' , n " s ~ f  3, s C ( n ~ n ' ) d ( n " ~ n ' ) [ f ( n ) - f ( n ' ~ ) ] = O  (A1) 
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Conversely, if (A1) stands, a direct evaluation of H ( L ( f ) ) -  H(f)  gives 0. 
Thus, one can show that a density f is a fixed point of L if and only if it 
satisfies 

Yn, n' e ~/g-2, ~r ~ n ' ) [ f ( n )  - f ( 5 ~ ( n ' ) ) ]  = 0 (A2) 

Proof. If (A2) is true, a direct evaluation of L( f ) (n)  shows that f is 
a fixed point of L. Conversely, i f f  is a fixed point of L, we have H(L(f)) = 
H(f), which yields relation (A1). Using then relation (1), since f is a fixed 
point of L, an integration of (A1) over n" finally yields (A2). 

A P P E N D I X  B 

Proof of  Proposi t ion 6. We have pointed out in Section 3 that if 
the set of 1-paths is only globally invariant under 50, one obtains a weaker 
result, that is, ;f-gd)~ is globally invariant under 5z. Let us first show this. 

Let �9 be a global invariant; then from Definition 3 

Vn, n'eC!/"2, s u C ( n - - . S P - l ( n ' ) ) ( @ , n - n ' ) = 0  

If ~r  then d ( n - - , 5  P l ( n ' ) ) ( S P @ , n - n ' ) ) = 0 .  If not, 
then n and n' are in the same 1-path, but since the 1-paths are globally 
invariant under 9 ~ 5z-~(n) and 5 P l(n') are also in the same path. 

But since r is constant on a 1-path, (@, 5 ~-  l ( n ) -  5 z -  ~(n ' ) )=  0 and 
since 5p is orthogonal, we finally have 

Vn, n'E:## 2, d(n-->5~ l ( n ' ) ) ( Z Z @ , n - - n ' ) = 0  

Thus, 5Pq ~ is a global invariant and then Slgt is globally invariant under ~ .  
But J is an orthogonal linear map, and since ~gd)l is orthogonal to ~{'~t, 
then Xfga) ~ is also globally invariant under 5 ~ as announced. This result 
suggests that for nonregular models, the set of global linear invariants 
would be larger than 9f'g'tL 

Recall that we have denoted 

Xgt  1 = {@ e NuL/Szq~ = r and Vc~ e Y,  @(c0 e Ylaoc } 

For regular models we prove that relation (7) of Proposition 6 holds: 

xJ ' = 1 

But S ; )  1 is always obviously included in 5Cga) 1 and hence we have just to 
prove that yfga}l is included in 5C~'/1. 

Thus, let @ be a global dynamical 1-invariant of a regular model. 
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Since the 1-paths are 5P-invariant and since q~ is constant on a given 
l-path, we have 

or equivalently 

V n ~ ,  <@, n> = <@, 5~-~n> 

Vn ~ "g/, {@-SP@, n> = 0  (B1) 

And, since the 1-paths are 5P-invariant, we know from the previous result 
that @ - S P ~  is in W~)I. By applying Lemma 1 of Section2 to (B1), we 
then deduce that @ - J @  = 0. We have now just to verify that the ~th 
projection of q~ is in fdoo. The definition of Sgd) 1 and 3((ioc implies that in 
any case ~b(a) is orthogonal to :floc. From the definition of global linear 
invariants and since q~ = 5P@ we then have 

Vn, n' ~ ~ 2 , ~ r  --* n ' ) < @ ,  n - n' > = 0 

'We then achieve the proof of (7) by using Lemma 2 of Section 2. 
In order to achieve the proof of Proposition 6, it remains to show that 

the linear 1-invariants are all regular. Any linear 1-invariant is by definition 
d, 1 t the sum of two orthogonal vectors, one in S g t ,  the other in ~,Ug~. Because 

of relation (7) the first is regular and the second is obviously regular from 
ilts definition, hence their sum is also regular. 

APPENDIX C 

Proof of Proposition 7. Let us recall properties (P1)-(P3): 

(Pl)  Vn, m e ~  2 , ~ 4 ( n ~ m ) # 0 = ~ o ~ c ( m - ~ n ) # 0  

(P2) ~ 4 ( m ~ n ) # 0 ,  d ( r ~ n ) # 0 ,  m # r ~ o ~ / ( m ~ r ) # 0  

(P3) n # m ~ d ( n ~ m ) <  1 

Proposition 7 states that any model which satisfies the three properties 
(P1)-(P3) is regular, the main argument being the fact that the phase space 
is finite. 

In order to prove the previous result, we just have to establish the 
relation (8) of Section 3. That is: for every initial density f0 we have 

V~>0, 3N~tN, p~>N~Vn~CU: Ifp+l(5~(n))-fp(n)t <~e 

Proof. Let us consider a model which obeys (P1)-(P3). At each 
configuration n, we associate a number m(n) defined by 

m(n)= l ,  if ~ r  

Inf{d(m --* n) d ( r  ~ n)}, if .~(n ~ n) # 1 
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The Inf is taken over all configurations m and r such that m r r and 
~r162 ~ ( r - ~ n ) r  We then define m as m = I n f { n ~ g , m ( n ) } .  
Since :U is finite, m is strictly positive. Let us then consider the sequence 
(Xp) associated to a given fo by 

Xp = X(fp) = f fp2(n) an 

This sequence is well defined since ~ is finite, and due to the convexity of 
x 2 this sequence is decreasing and thus converging. Hence, for any given 
e > 0  there exists an integer N such that for any p>~N we have 
0 <~ Xp- Xp+l<~ e. From the semi-detailed balance and since 5" preserves 
the measure, one can write 

1 
',n,,n;} . .  

But since x 2 is convex, the number under the first integral is always 
positive for each n. Thus for p >~ N we have 

O <~ [ f , r f  2p(n') d(n'-~ 5~-l(n)) dn' ] 

- I f  fp(n')d(n'~ CJ-l(n))dn']2<~ 

If we now multiply the first term in the middle of this inequality by 
1 = S~ d ( n "  ~ 5p ~(n)) dn", it yields after rearrangement 

0<<.~ [fp(n')-fp(n")]2d(n'~Sr ~ ( n ) ) d ( n " ~ 5 ~   (n))dn'dn"J <e 

Hence we deduce that for any n, if ~ ( m ~ S C - l ( n ) ) ~ 0  and 
~ ( r  ~ 5~ 162  then for p>~Nwe have 

[fp(m)--fp(r)[ ~ ( ~ )  1/2 

But since 5 ~ is a bijection, we finally deduce that for each initial density f0 
and for each e > 0 there exists an integer N such that for any configuration 
n and any p >i N we have 

d ( m  ~ n) r  d ( r  ~ n) :~0 ~ IfAm)-fAr)l ~< (c1)  
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We then consider any given n in ~ .  If ~r --> n) = 1, then (8) is obvious; 
let us then assume that sC(n--*n)r 1. From property (P3) and semi- 
detailed balance, we deduce that there exist at least two configurations 
m ~ r such that sC(m ~ n) r 0 and d ( r  ~ n) ~ 0. From (P2), we then have 
~ ( m - - * r ) r  and from (P1), d ( n  -* r) :~ 0. We then apply (C1) to r and 
we deduce 

Ve>0, ~N, p>~N, ~r 

But we have 

fp+ ~(s(n)) = f ~  [fp(n') - f p ( n ) ]  ~r -~ n) dn' + fp(n) 

The last two relations finally yield (8). 
A useful simplification in the presentation of this proof has been 

suggested to me by D. d'Humi6res. 

APPENDIX  D 

P r o o f  of  P r o p o s i t i o n  9. Here, we show the following charac- 
terization of X~? k for models which obey (P1)-(P3): 

d,k 

where o~/'gd'l k is the set of the global linear dynamical k-invariants of L k and 
where we have denoted 

J~f;? = {q~ e RNC/sekO5 = ~b and Ve e &o, ~b(~), 5e~b(e),..., 5~ k- 1~(c~)~ ~((oc } 

Similarly to the case k--1 ,  we just have to show that jg-a)k is included 
in oU~'[. 

Thus, let us consider a model which obeys (P1)-(P3). We have seen 
in Section 3 that the fixed points of L k are then invariant under 5 ak. So we 
deduce that each k-path of 5e k is invariant under 5 ~ .  Now a demonstra- 
tion similar to that proposed in Appendix B for the elements of XJ)  1 shows 
that if ~b is in ~gd)k, then 5~kq~ = ~b. It now just remains to see that 5eicb(7) 
is in J{(oc for any node c~ and i = 1,..., k -  1. This is a little lengthy and thus 
we limit it here to the case k = 2. 

Let 45 be a nonzero elements of jg-gd?2. We will first prove that 5eqs(c~) 
is in ~laoc for all a. 

Let us consider the density g0(n)=k  exp[q~(n)] (where k is a nor- 
malization constant) which is a fixed point for L 2. We then set gl = Lgo. 
The sequence (gn) defined by gn= Lngo is then reduced to g2p=go and 

822/68/3-4-10 
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g2p+l =g~. By applying relation (8) of Section 3 to (g,), one then deduces 
that 

Vn ~ ~,K, g l (~n )  = go(n ) 

that is, 

f: go(n') d ( n '  -~ n) dn'= go(n) (D1) 

But since ~ is a linear global 2-invariant, we have from Definition 5 of the 
linear invariant of L k 

Vn, n', n 1 ~ :~/-3, d ( n '  -:, A e l(nl))  d ( n l  -~ ~ l ( n ) ) [ g o ( n ) -  go(n')] = 0 

(D2) 

We then sum (D2) over all n' in ~ and by using (D1) this yields 

Vn, nl s ~g/2, J ( n l  ~ 5 v ~(n))[go(n)-go(5~-lnl) ]  = 0  

or equivalently 

Vn, nlz~#/'2, ~ ( ~  l(nl)--+Av-l(n))[go(n)--go(AV-2nl)]=O 

But go is invariant under y2 ,  and this last relation yields 

Vn, nl c r 2, sC(5~-'(n~) --+ ~ - l ( n ) ) [ g o ( n ) -  go(n1)] = 0  

Now, exp(.-. ) is a bijection on $ and thus this last relation can be replaced 
by 

Vn, n~eCV 2, d ( 5  f l (n~)--+5~-~(n))<q~,n-n1>=0 

From Lemma 2 of Section 2, this implies that 50 ~4)(~) and consequently 
b'q)(~) are in ~r for any ~. It remains to show that ~(~) is also in X~o c. 
Let us then consider again relation (D2), but writing it under the following 
form: 

Vn, n', n l z  ~4#3 , ~/(n'  ---~ 5g- 1(nl)) ~r --+ n)r go(,gv n) - go(n')-] = 0 

But since 5~4)(c~) is in Jd d )oo, we have sd(na ~ n)[go(5~n)-go(SPnl)] =0.  
We now sum over all n in r and by use of (D1) this yields, after replacing 
n' by 5~-1(n'),  

Vn', nl ~W "2, ~ ' (SP-l(n ') --, 5g-~(nl))[go(SPnl)-go(5 ~ in')] = 0  



Global Invariants and Equilibrium States 491 

Since go is Y2-invariant, we obtain 

Vn', nl e ~W 2, ~d(n' ~ n l ) [g0(n l ) -g0(n ' ) ]  = 0  

Applying again Lemma 2 of Section 2, we finally deduce that @(~) is in 
J{'~oc for any c~, which then yields the proof of the relation (11) for the case 
k = 2 .  

In the general case, the machinery of the proof is identical : one has 
to show successively that ~k- l@(c0  ' and then 5~k-2~(c~)- and then down 
to ~b(c~) are in S~o c for any ~. This is achieved by recurrence on the order 
once it has been shown for 5pk ~b(c~). 

In order to achieve the proof of Proposition 9, it remains to show that 
the linear k-invariants are all regular; the argument is in fact the same as 
in Appendix B. Any linear linear k-invariant is by definition the sum of two 

d , k  r orthogonal vectors, one in S g  l , the other in Wg l. Because of relation (11) 
the first one is regular while the second is obviously regular from its 
definition and that of 5 p, hence their sum is also regular. 

APPENDIX E 

We first establish the equivalences in relation (16): 

(a) 6 ( N ) = 0  

(b) Log(N) ~ J(r 

(c) (6(N), Log(N))  = 0  

(d) f ( n ) = l ~ . I ~ . I ~ I . [ N ; ]  "{(~) is a fixed point of L 
c~ j = l  i = l  

where N is a vector in ]0, 1 I N  We have obviously ( b ) ~  ( d ) ~  ( a ) ~  (c). 
Indeed, if (b) is true, then relations (17) and (18) are verified since N is 
constant over the nodes and thus f is a fixed point of L. Thus, from (15) 
we have 6 ( N ) = 0  and hence (6(N), L o g ( N ) ) = 0 .  It now just remains to 
see that (c)=~ (b). 

Thus, if X and Y are two elements in d ~ we set 

b nj  b n j  
. )r 

x(X) = l~ " l~ " IN{] i and y ( r )  = 1~ -1~ �9 [Uj]  r~ 
j = l  i=1  j = l  i = 1  

The expression <6(N), L o g ( N ) ) = 0  can be rewritten in the form 

[ r)x(X) Log (y(r))  dXar=O (El) 
�9 • ,. \ x ( X ) /  Jg 
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But from semi-detailed balance we have 

= y (r )  d r =  r) y ( r ) d X  d r  

Thus, (El) yields 

(y(Y)) +. y(Y)3 
[or215 Y) x(X) Log \x(X)/t l -x - -~J  dXdY=O 

But the function Log(u)+  1 - u  is ~<0 for any u > 0  and it is 0 is and only 
if u = 1. Thus, the previous equality implies that for all X and Y we must 
have ~(X--+ Y)[y( Y ) -  x(X)] = 0. But it is equivalent to 

VX, Yegxg ,  a,(X--+ Y){Log[y(Y)]-Log[x(X)]} = 0  

Or by evaluating Log(y) and Log(x(X)) 

VX, Y~gx8,  c~(X--+ Y)(Log(N), Y - X ) = 0  

Thus, Log(N) is in Jglloo and finally (c)=> (b). 

P r o o f  o f  P r o p o s i t i o n  12. Let us consider a model which admits 
a regular configuration, say m0. Let {mi}, i >/ 1, be the set of configurations 
which differ from mo on at most one node and one gJ. It is composed 
of (NL-bL) configurations obtained (see Lemma 1, Section2) by 
successively permuting in mo a one and a zero node after node and on 
each gJ. We prove that if the densities f and L(f) are both factorized, then 
the following relations hold: 

5 ~ N = N  * (E2) 

Log(N(~)) E J~oc, W (E3) 

where N and N* are the mean population fields of resp. f and L(f). Now 
let us project the vectors Log(N) and Log(N*) on W~t such that 
Log(N) = ~b' + ~b, Log(N*) = ~u, + 7/, where ~b' and ~u, are in J{~t while 
and 7, are in its orthogonal. Since qv and 7" are constant on the whole 
phase space, there exists two constants k and k* such that the densities f 
and L(f) are given by 

Vn, f (n )  = exp((Log(N),  n ) ) )  = k exp((~ ,  n ) )  (E4) 

Vn, L ( f ) ( n ) = e x p ( ( L o g ( N * ,  n ) ) = k *  exp((g*, n ) )  (E5) 
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Let us then observe that the set {mi}, i~> 0, is globally invariant under 5 ~ 
This set is composed of configurations which ate collisionally invariant. Let 
then me be such a configuration; in these conditions 50-1(mi) has the 
same property and thus d(m'--*50-1(m;))  is nonzero if and only if 
m '=50  l(m,-). Then, from the definition (1) of L and from (E4) we will 
necessarily have for this configuration mi 

L(f)(mz) = k  exp((5045, me)) 

and hence from (E5) 

k exp( (5045, mi) ) = k* exp(( T', m~)) (E6) 

This last relation then yields 

(k) Vi~>0, (5045-~U, m e ) = L o g  ~ (E7) 

But, since 5" is an orthogonal map, 5045 remains, like 45, in the subspace 
orthogonal to Sf'gZ. By applying Lemma 1 of Section 2 to (E7), we then 
deduce that T =  5045 and k = k*. Replacing these equalities in (E5) yields 
Vn, L(f)(n)-=k exp((5045, n)). Now the lhs of identity (15) is obviously 
equal to zero, which gives, considering the definition of the mean popula- 
tion, 50N = N*, and so (E2) is proven. Now, since in the identity (15) the 
lhs is zero, the rhs is also zero. This yields for any node ~, ,5(N(o~))=0, and 
finally (E3) results from the equivalences (16). 

Let us now prove that any dynamical k-invariant of such a model is 
50k-invariant. Let us then observe that in fact the set {mi}, i ~> 0, is globally 
invariant under 5 ek. Thus, if mi is such a configuration, we will have 

dk(mi.---~ S, ak lmi) ~0 

Hence, from the definition of the global k-invariant and if 45 is a 
dynamical one, we obtain 

(45, m i -  50kmi) = 0 or (45 -50  k45, mi) = 0 

The proof is then completed, as previously, by applying Lemma 1 of 
Section 2. 
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